Geometry

CHAPTER -18B

For SSC CHSL Exam

1. One of the angles of a triangle is 108°, and the other two angles are equal. What is the measure of each of these equal angles?

SSC CHSL 10/06/2022 (Shift-2)
(a) 36°
(b) 72°
(c) 78°
(d) 39°
2. The ratio in which a transverse common tangent drawn to two circles with radii 4 cm and 6 cm , respectively, divides the line joining their centres is:

SSC CHSL 09/06/2022 (Shift-3)
(a) $2: 3$
(b) $1: 1$
(c) $1: 2$
(d) $3: 4$
3. In a circle, AB and CD are two diameters which are perpendicular to each other. Find the length of chord AC.

SSC CHSL 09/06/2022 (Shift-2)
(a) $\sqrt{2} \mathrm{CD}$
(b) $\frac{A B}{\sqrt{2}}$
(c) $\frac{C D}{2}$
(d) 2 AB
4. In the following figure, $\angle \mathrm{ABC}$ is an inscribed triangle as shown and DE is a tangent to the circle at C . If $\mathrm{m} \angle \mathrm{ACD}=65^{\circ}$ and $\mathrm{m} \angle \mathrm{ACB}=35^{\circ}$, find the measure of $\mathrm{m} \angle \mathrm{BAC}$.

SSC CHSL 09/06/2022 (Shift-1)
(a) 30°
(b) 75°
(c) 60°
(d) 65°
5. If two circles of radii 28 cm and 18 cm touch each other externally, then the length of a common tangent (in cm) is
\qquad [Give your answer correct to 2 decimal places.]
SSC CHSL 08/06/2022 (Shift-3)
(a) 40.90
(b) 42.00
(c) 44.90
(d) 44.12
6. From a point P that is at a distance of 15 cm from centre O of a circle of radius 9 cm , in the same plane, a pair of tangents PQ and PR is drawn to the circle. The area of quadrilateral PQOR (in cm^{2}) is :

SSC CHSL 19/04/2021 (Shift-3)
(a) 114
(b) 108
(c) 118
(d) 106
7. In a right angled triangle ABC , if $\angle \mathrm{ABC}=90^{\circ}$, $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$, and BD is perpendicular to AC , then $\mathrm{AD}: \mathrm{DC}$.

SSC CHSL 19/04/2021 (Shift-3)
(a) $7: 16$
(b) $8: 15$
(c) $9: 14$
(d) 9:16
8. Find the radius of the circles
$x^{2}+y^{2}-4 x+6 y=12$.
SSC CHSL 08/06/2022 (Shift-2)
(a) 4
(b) 3
(c) 5
(d) 2
9. If two supplementary angles differ by 74°, then one of the angles is:

SSC CHSL 08/06/2022 (Shift-1)

(a) 65°
(b) 55°
(c) 43°
(d) 53°
10. An arc on a circle that is 18 cm long, subtends a 28.8° angle at the centre. What is the circumference of the circle (in cm)?

SSC CHSL 07/06/2022 (Shift-3)
(a) 180
(b) 216
(c) 225
(d) 240
11. The area of two similar triangles $X Y Z$ and $A B C$ are $361 \mathrm{~cm}^{2}$ and $225 \mathrm{~cm}^{2}$, respectively. If the longest side of the larger $\triangle \mathrm{XYZ}$ be 38 cm , then what is the length (in cm) of the longest side of the smaller $\triangle \mathrm{ABC}$?

SSC CHSL 07/06/2022 (Shift-2)
(a) 35
(b) 28
(c) 32
(d) 30
12. Chords AB and CD of a circle are produced to meet at the point P , outside the circle, and AD is the diameter of the circle. If $\angle \mathrm{DAP}=36^{\circ}$ and $\angle \mathrm{APC}=30^{\circ}$, then what will be the measure of $\angle \mathrm{CBD}$?

SSC CHSL 19/04/2021 (Shift-2)
(a) 34°
(b) 26°
(c) 24°
(d) 16°
13. $P Q R S$ is a cyclic quadrilateral with $Q R$ as the diameter of the circle. If $\angle \mathrm{SQR}=24^{\circ}$ then what will be the measure of $\angle \mathrm{QPS}$

SSC CHSL 19/04/2021 (Shift-2)
(a) 114°
(b) 126°
(c) 104°
(d) 116°
14. In $\triangle P Q R, \angle P Q R=135^{\circ}, \mathrm{PQ}=8 \sqrt{2} \mathrm{~cm}$ and $\mathrm{PR}=17$ What is the length (in cm) of QR ?

SSC CHSL 19/04/2021 (Shift-2)
(a) 7
(b) 10
(c) 8
(d) 9
15. The perimeter of $\triangle A B C$ and $\triangle D E F$ are 39.6 cm and 26.4 cm , respectively, and $\triangle A B C \sim \triangle D E F$. What is the ratio of the areas of $\triangle A B C$ and $\triangle D E F$?

SSC CHSL 19/04/2021 (Shift-2)
(a) $3: 2$
(b) 9:4
(c) $16: 9$
(d) $9: 2$
16. In $\triangle A B C, \mathrm{D}$ and E are points on sides AB and BC , respectively, such that $\mathrm{BD}: \mathrm{DA}=1: 2$ and $\mathrm{CE}: \mathrm{EB}=1: 4$. If DC and AE intersect at F , then $\mathrm{FD}: \mathrm{FC}$ is equal to:

SSC CHSL 19/04/2021 (Shift-1)
(a) $3: 2$
(b) $5: 2$
(c) $8: 3$
(d) $4: 1$

2 - SSC Maths
17. A and B are two points on a circle with centre O. C is a point on the minor arc of the circle between points A and B. The tangents to the circle at A and B meet each other at a point D . If $\angle A D B=25^{\circ}$, then $\angle A C B$ (in degrees) is equal to:

SSC CHSL 16/04/2021 (Shift-2)
(a) 105
(b) 100.5
(c) 102.5
(d) 100
18. The side BC of triangle $A B C$ is produced to D . The bisectors of $\angle A B C$ and $\angle A C D$ meet at E . If $\mathrm{AB}=\mathrm{AC}$ and $\angle B E C=35^{\circ}$, then the measure of $\angle A B C$ will be:

SSC CHSL 16/04/2021 (Shift-2)
(a) 75°
(b) 55°
(c) 35°
(d) 45°
19. In $\triangle A B C, \angle \mathrm{~B}=90^{\circ}, \mathrm{AD}$ and CE are the medians drawn from A and C respectively. If $\mathrm{AC}=10 \mathrm{~cm}$ and $\mathrm{AD}=\sqrt{55} \mathrm{~cm}$, then the length of CE is:

SSC CHSL 16/04/2021 (Shift-2)
(a) $2 \sqrt{15} \mathrm{~cm}$
(b) $\sqrt{70} \mathrm{~cm}$
(c) $\sqrt{66} \mathrm{~cm}$
(d) $5 \sqrt{3} \mathrm{~cm}$
20. The sides AB and AC of a $\triangle \mathrm{ABC}$ are produced up to points D and E . The bisectors of the exterior angles so formed, intersect each other at point I. If $\angle \mathrm{ACB}=66^{\circ}$ and $\angle \mathrm{ABC}=44^{\circ}$, then what is the measure (in degrees) of $\angle \mathrm{BIC}$?

SSC CHSL 15/04/2021 (Shift-2)
(a) 52
(b) 50
(c) 48
(d) 55
21. $A B$ is a diameter of the circle with centre D. The tangent at the point C on the circle meets AB produced at Q. If $\angle \mathrm{BAC}=34^{\circ}$ then the measure of $\angle \mathrm{CQA}$ (in degrees) will be:

SSC CHSL 15/04/2021 (Shift-1)
(a) 26°
(b) 36°
(c) 22°
(d) 24°
22. $\triangle A B C \sim \triangle E D F$, Area of $\mathrm{ABC}: 2$ Area of $\mathrm{DEF}=49: 4$. If $\mathrm{AB}, \mathrm{AC}, \mathrm{BC}$ are respectively, $10 \mathrm{~cm}, 14 \mathrm{~cm}, 21 \mathrm{~cm}$, then what is the length (in cm) of EF ?

SSC CHSL 15/04/2021 (Shift-1)
(a) 4.5
(b) 6
(c) 3.5
(d) 4
23. $A B$ is a diameter of a circle with centre O. If C is any point on the circle such that $\angle \mathrm{BAC}=42^{\circ}$, then find the measure of $\angle \mathrm{BOC}$.

SSC CHSL 15/04/2021 (Shift-1)
(a) 60°
(b) 63°
(c) 42°
(d) 84°
24. $\triangle A B C \sim \triangle P Q R$. The perimeters of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are 72 cm and 43.2 cm , respectively. What is the ratio of the areas of $\triangle \mathrm{ABC}$ to the area of $\triangle \mathrm{PQR}$?

SSC CHSL 15/04/2021 (Shift-1)
(a) $25: 9$
(b) $36: 25$
(c) $16: 9$
(d) $9: 4$
25. A circle touches all four sides of a quadrilateral $P Q R S$. If $\mathrm{PQ}=11 \mathrm{~cm} \mathrm{QR}=12 \mathrm{~cm}$ and $\mathrm{PS}=8 \mathrm{~cm}$ then what is the length of RS?

SSC CHSL 13/04/2021 (Shift-3)
(a) 9
(b) 7.3
(c) 7
(d) 15
26. P, Q and R are three points on the circumference of a circle such that QR is a diameter and $\mathrm{PQ}=\mathrm{PR}$ If the radius of the circle is 7 cm , then the length of PQ (in cm) is:

SSC CHSL 13/04/2021 (Shift-3)
(a) $14 \sqrt{2}$
(b) 7
(c) $77 \sqrt{3}$
(d) $7 \sqrt{2}$
27. The side BC of a triangle ABC is extended to a point D . If $\angle \mathrm{ACD}=117^{\circ}$ and $\angle \mathrm{ABC}=\frac{5}{8} \angle \mathrm{BAC}$ then what is the measure of $\angle \mathrm{ABC}$.

SSC CHSL 13/04/2021 (Shift-3)

(a) 45°
(b) 72°
(c) 36°
(d) 54°
28. Two sides of a triangle are 12.8 m and 9.6 m . If the height of the triangle is 12 m , corresponding to 9.6 m , then what is its height (in m) corresponding to 12.8 m ?

SSC CHSL 13/04/2021 (Shift-2)
(a) 12
(b) 9
(c) 10
(d) 8
29. In $\triangle A B C, \angle B=90^{\circ}, \mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=15 \mathrm{~cm}$. D is a point on BC such that AD bisects $\angle A$. The length of BD (in cm) is:

SSC CHSL 13/04/2021 (Shift-2)
(a) 4.5
(b) 4.8
(c) 4.2
(d) 3.6
30. ABCD is a cyclic quadrilateral with AB as a diameter of the circle. If $\angle A D C=118^{\circ}$ then the measure (in degrees) of $\angle B A C$?

SSC CHSL 13/04/2021 (Shift-2)
(a) 32
(b) 38
(c) 22
(d) 28
31. $A B$ and $C D$ are two chords of a circle which intersect at E inside the circle. If $\angle B E C=125^{\circ}$ and $\angle E B D=28^{\circ}$, then what is the measure of $\angle B A C$?

SSC CHSL 13/04/2021 (Shift-1)
(a) 55°
(b) 87°
(c) 56°
(d) 97°
32. $\triangle P Q R$ is inscribed inside a circle with center O . Proceeding from PO, meets QR at point U and meets circle at point S and is $\mathrm{PT} \perp \mathrm{QR}$, where point T lies between point Q and point U . If $\angle \mathrm{Q}=70^{\circ}$ and $\angle \mathrm{R}=55^{\circ}$ then find the measure of \angle TPS.

SSC CHSL 13/04/2021 (Shift-1)
(a) 25
(b) 30
(c) 15
(d) 20
33. In $\triangle A B C, \mathrm{DE} \| \mathrm{AB}$, where D and E are points on sides AC and BC respectively. F is a point between C and D such that $\mathrm{EF} \| \mathrm{BD}$. If $\mathrm{AD}=15 \mathrm{~cm}, \mathrm{DC}=10 \mathrm{~cm}$, then the length of CF is:

SSC CHSL 13/04/2021 (Shift-1)
(a) 3 cm
(b) 7.5 cm
(c) 5 cm
(d) 4 cm
34. Two circles with centre O and P and radii 17 cm and 10 cm respectively, intersect each other at A and B . The length of the common chord AB is 16 cm . What is the perimeter of the triangle OAP? (in cm)

SSC CHSL 12/08/2021 (Shift-3)
(a) 33
(b) 25
(c) 48
(d) 40
35. Two equal circles of radius 8 cm intersect each other such that each passes through the centre of the other. The length (in cm) of the common chord is:

SSC CHSL 12/08/2021 (Shift-3)
(a) 8
(b) $4 \sqrt{3}$
(c) $8 \sqrt{3}$
(d) $8 \sqrt{2}$
36. In $\triangle A B C, \mathrm{AC}=\mathrm{BC}$, and the length of the base AB is 10 cm . If $\mathrm{CG}=8 \mathrm{~cm}$, where G is the centroid, then what is the length of $\mathrm{AC}(\mathrm{in} \mathrm{cm})$?

SSC CHSL 12/08/2021 (Shift-3)
(a) 13
(b) 15
(c) $\sqrt{91}$
(d) 12
37. $\triangle A B C$ is drawn in a circle such that $\mathrm{AC}=\mathrm{BC}$ and $\angle \mathrm{BAC}=65^{\circ}$. From points B and C two tangents are drawn which intersect at point P . What is the measure of $\angle \mathrm{BPC}$?

SSC CHSL 12/08/2021 (Shift-1)
(a) 52.5°
(b) 50°
(c) 55°
(d) 32.5°
38. O is the centre of a circle of radius $9 \mathrm{~cm} . \mathrm{M}$ is a point outside the circle and MN is a tangent to the circle.
What is the length (in cm) of OM if the length MN is 12 cm ?
SSC CHSL 12/08/2021 (Shift-1)
(a) 17
(b) 12
(c) 15
(d) 21
39. The side $Q R$ of a triangle $P Q R$ is extended to a point S. If $\angle \mathrm{PRS}=104^{\circ}$ and $\angle \mathrm{PQR}=\frac{3}{5} \angle Q P R$, then the value of $\angle \mathrm{QPR}$ is:

SSC CHSL 12/08/2021 (Shift-1)
(a) 65°
(b) 55°
(c) 45°
(d) 58°
40. Chords AB and CD of a circle meet at point P (outside the circle), when produced. If $\mathrm{AB}=9 \mathrm{~cm}, \mathrm{~PB}=\frac{1}{3} A B$ and
$\mathrm{CD}=5 \mathrm{~cm}$ then the length of PD :

SSC CHSL 12/08/2021 (Shift-1)
(a) 7 cm
(b) 6 cm
(c) 5 cm
(d) 4 cm

SOLUTIONS

1. (a) we know that

Sum of angles in a triangle $=180^{\circ}$
Let two equal angle (each) be x
$x+x+108^{\circ}=180^{\circ}$
$\Rightarrow 2 x=72^{\circ}$
$\therefore x=36^{\circ}$
2. (a) According to question
$\angle \mathrm{AEC}=\angle \mathrm{BDC}=90^{\circ}$
$\angle \mathrm{ACE}=\angle \mathrm{BCD}=\theta$

$\therefore \triangle \mathrm{EAC} \sim \Delta \mathrm{DBC}$
$\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{AE}}{\mathrm{DB}}=\frac{4}{6}=\frac{2}{3}=2: 3$
3. (b) According to the question,

By Pythagoras theorem
$\mathrm{AC}=\sqrt{r^{2}+r^{2}}$
$\mathrm{AC}=\sqrt{2 r^{2}}=\sqrt{2} \mathrm{r}$
$A C=\frac{A B}{\sqrt{2}}$

Given : $\angle \mathrm{ACD}=65^{\circ}$
$\angle \mathrm{ACB}=35^{\circ}$
$\angle \mathrm{ACD}=\angle \mathrm{ABC}=65^{\circ}$
Sum of angles in a triangles $=180^{\circ}$ $\angle \mathrm{BAC}=180^{\circ}-65^{\circ}-35^{\circ}=80^{\circ}$

5. (c) According to the question, length of a common tangent
$\mathrm{PQ}=2 \sqrt{r_{1} \times r_{2}}$
$=2 \sqrt{28 \times 18}$
$=2 \times 6 \sqrt{14}$
$=12 \times 3.7=44.40$

6. (b) According to the question, in $\triangle \mathrm{OPQ}$,
$\mathrm{OP}=15 \mathrm{~cm}$
$O R=O Q=9 \mathrm{~cm}$
$\mathrm{PQ}=12$ by triplets $9,12,15$

Area of quadrilateral $=2 \times \frac{1}{2} \times 12 \times 9=108$
7. (d) Given $\mathrm{AB}=6 \mathrm{~cm}$
$\mathrm{BC}=8 \mathrm{~cm}$
$\angle \mathrm{ABC}=90^{\circ}$
In right angle tringle ABC
6,8,10 By triplets
$\mathrm{AC}=10 \mathrm{~cm}$
In $\Delta \mathrm{BDC}$ and $\Delta \mathrm{ABC}$

$\angle \mathrm{B}=\angle \mathrm{D}=90^{\circ}$
$\angle \mathrm{C}=\angle \mathrm{C}$ (common angle)
$\mathrm{BC}=\mathrm{BC}($ common Arm $)$
$\therefore \Delta \mathrm{BDC} \sim \Delta \mathrm{ABC}$
$\mathrm{DC}=\frac{\mathrm{BC}^{2}}{\mathrm{AC}^{2}}=\frac{8 \times 8}{10}=6.4$
$\mathrm{AD}=\mathrm{AC}-\mathrm{DC}=10-6.4=3.6$
$\mathrm{AD}: \mathrm{DC}=63.6: 6.4=9: 16$
8. (c) According to the question,
equation of circle $=(x-a)^{2}+(y-b)^{2}=r^{2}$
$[\therefore \mathrm{a}, \mathrm{b}$ are centre point or coordinate of centre]
$(x-2)^{2}+(y+3)^{2}-13=12$
$(x-2)^{2}+(y+3)^{2}=25$
$\Rightarrow \mathrm{r}^{2}=25$
$\therefore r=5$
9. (d) Let two supplementary angle be A and B

According to question
Sum of supplementary angle $=180^{\circ}$
$\mathrm{A}+\mathrm{B}=180^{\circ}$-(i)
$\mathrm{A}+\mathrm{B}=74$ - (ii)
Equation (i) + (ii)
$2 \mathrm{~A}=254^{\circ}$
$\Rightarrow \angle \mathrm{A}=127^{\circ}$
$\therefore \angle \mathrm{B}=180^{\circ}-127^{\circ}=53^{\circ}$
10. (c) According to question
$\begin{gathered}\text { length of } \operatorname{arc}= \\ \pi R \theta\end{gathered}=\frac{\pi R \theta}{180}$
$\Rightarrow \frac{\pi \mathrm{R} \theta}{180^{\circ}}=18$
$\Rightarrow \pi \mathrm{R}=\frac{18 \times 180^{\circ}}{28.8^{\circ}}=$
\therefore circumference of a circle $=2 \pi \mathrm{R}$
$=\frac{2 \times 18180^{\circ}}{28.8^{\circ}}=225 \mathrm{~cm}$
11. (d) Given: Area $\triangle \mathrm{ABC}=225 \mathrm{~cm}^{2}$

Area $\Delta \mathrm{XYZ}=316 \mathrm{~cm}^{2}$
and larger side of $\Delta X Y Z=38$
$\frac{\text { Larger side of } \triangle \mathrm{XYZ}}{\text { Larger side of } \triangle \mathrm{ABC}}=\sqrt{\frac{\text { Area } \Delta \mathrm{xyz}}{\text { Area } \triangle \mathrm{ABC}}}$
$=\frac{38}{\mathrm{~S}(\triangle \mathrm{ABC})}=\sqrt{\frac{361}{225}}=\frac{19}{15}$
$\Rightarrow S(\triangle \mathrm{ABC})=30 \mathrm{~cm}$
12. (c) ATQ,
$\angle \mathrm{ADC}=\angle \mathrm{APC}+\angle \mathrm{DAP}$
$=36^{\circ}+30^{\circ}=66^{\circ}$
So, $\angle \mathrm{ABC}=66^{\circ}$
$\angle \mathrm{ABD}=90^{\circ}$
$\Rightarrow \angle \mathrm{CBD}+\angle \mathrm{ABC}=90^{\circ}$

$\Rightarrow \angle \mathrm{CBD}=90^{\circ}-66^{\circ}=24^{\circ}$
13. (a) Given $\angle \mathrm{SQR}=24^{\circ}$
$\angle \mathrm{QRS}=90^{\circ}$ (angle inscribed in a semi circle)
$\Rightarrow \angle \mathrm{SQR}+\angle \mathrm{QRS}+\angle \mathrm{RSQ}=180^{\circ}$
$\Rightarrow \angle \mathrm{RSQ}=180^{\circ}-24^{\circ}-90^{\circ}=66^{\circ}$
$\Rightarrow \angle \mathrm{RSQ}+\angle \mathrm{QRS}=180^{\circ}$ (sum of opposite side pair)
$\therefore \angle \mathrm{QPS}=180^{\circ}-66^{\circ}=114^{\circ}$
14. (a) Let value of $b=x$

ATQ , $\cos 135^{\circ}=\frac{\left[x^{2}+(8 \sqrt{2})^{2}-(17)^{2}\right]}{2 \times x \times \mathrm{Q} \sqrt{2}}$
$\Rightarrow-\frac{1}{\sqrt{2}}=\frac{\left(x^{2}-161\right)}{16 \sqrt{2} x}$
$\Rightarrow-16 x=x^{2}-161$
Factor of - 161

$$
-23+7=-16
$$

$\therefore \mathrm{QR}=7$
15. (b) ATQ,

Ratio between area of $\Delta \mathrm{ABC}$ and $\triangle \mathrm{DEF}$
$=\frac{39.6 \times 39.6}{26.4 \times 26.4}=\frac{9}{4}$ or $9: 4$
Sol. 16 : (c) $\frac{\mathrm{BD}}{\mathrm{DA}} \times \frac{\mathrm{AG}}{\mathrm{GC}} \times \frac{\mathrm{CE}}{\mathrm{BE}}=1$
$\frac{\mathrm{AG}}{\mathrm{GC}}=1 \times \frac{4}{1} \times \frac{2}{1}=\frac{8}{1}$
$\frac{\mathrm{CF}}{\mathrm{FD}}=\frac{\mathrm{GC}}{\mathrm{AG}}+\frac{\mathrm{CE}}{\mathrm{BE}}=\frac{1}{8}+\frac{1}{4}=\frac{3}{8}$

FD : $\mathrm{FC}=8: 3$
17. (c)

In OADB

$\angle \mathrm{O}+\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{D}=360^{\circ}$
$\angle \mathrm{O}=360^{\circ}-90^{\circ}-90^{\circ}-25^{\circ}=155^{\circ}$
$\angle \mathrm{O}=2 \angle \mathrm{P}$
$\angle \mathrm{P}=\frac{\angle \mathrm{O}}{2}=\frac{155^{\circ}}{2}=77.5^{\circ}$
PACB is a cyclic quadrilateral
$\angle \mathrm{APB}+\angle \mathrm{ACB}=180^{\circ}$
$\angle \mathrm{ACB}=180-77.5=102.5^{\circ}$
18. (b) $\angle \mathrm{BAC}=2 \angle \mathrm{BEC}$
$\angle \mathrm{BAC}=2 \times 35^{\circ}=70^{\circ}$
$\angle \mathrm{B}=\angle \mathrm{C}$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$

$2 \angle \mathrm{~B}=180^{\circ}-70^{\circ}$
$\angle \mathrm{B}=\frac{110^{\circ}}{2}=55^{\circ}$
19. (b) $\mathrm{AB}=\sqrt{55} \mathrm{~cm}, \mathrm{AC} 10 \mathrm{~cm}$

In $\triangle \mathrm{ABD}$

$\mathrm{AD}^{2}=\mathrm{AB}^{2}+\mathrm{BD}^{2}$
$\mathrm{AD}^{2}=\mathrm{AB}^{2}+\left(\frac{\mathrm{BC}}{2}\right)^{2}[\mathrm{BD}=\mathrm{DE}] \rightarrow(\mathrm{i})$
In $\triangle \mathrm{BCE}$

$\mathrm{CE}^{2}=\mathrm{BC}^{2}+\mathrm{BE}^{2}$
$\mathrm{CE}^{2}=\mathrm{BC}^{2}+\left(\frac{\mathrm{AB}}{2}\right)^{2}[\mathrm{BE}=\mathrm{AE}] \rightarrow(\mathrm{ii})$
From (i) $+(\mathrm{ii})$
From (i) $+($ ii)
$\mathrm{AD}^{2}+\mathrm{CE}^{2}=\mathrm{AB}^{2}+\frac{\mathrm{BC}^{2}}{4}+\mathrm{BC}^{2}+\frac{114^{\circ}}{2}$
$\mathrm{AD}^{2}+\mathrm{CE}^{2}=\frac{5}{4}\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}\right)$
$\mathrm{AD}^{2}+\mathrm{CE}^{2}=\frac{5}{4} \mathrm{AC}^{2}\left[\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}\right]$
$\mathrm{CE}^{2}=\frac{5}{4} \times 100-55=70$
$\mathrm{CE}=\sqrt{70} \mathrm{~cm}$
20. (d)
$\angle \mathrm{BCI}=\frac{180^{\circ}-66^{\circ}}{2}$
$=57^{\circ}$
$\angle \mathrm{CBI}=\frac{180^{\circ}-44^{\circ}}{2}=68^{\circ}$
$\angle \mathrm{BIC}=180^{\circ} \stackrel{2}{-} \angle \mathrm{BCI}-\angle \mathrm{CBI}$ $=180^{\circ}-57^{\circ}-68^{\circ}$
$\angle \mathrm{BIC}=55^{\circ}$
21. (c) $\mathrm{AO}=\mathrm{OC}$
$\angle \mathrm{OAC}=\angle \mathrm{ACO}=34^{\circ}$
$\angle \mathrm{COQ}=\angle \mathrm{OAC}+\angle \mathrm{ACO}$

$\angle \mathrm{COQ}=34^{\circ}+34^{\circ}=68^{\circ}$
In $\triangle \mathrm{COQ}$,
$\angle \mathrm{COQ}+\angle \mathrm{OCQ}+\angle \mathrm{CQO}=180^{\circ}$
$\angle \mathrm{CQO}=180^{\circ}-90^{\circ}-68^{\circ}=22^{\circ}$
$\angle \mathrm{CQA}=\angle \mathrm{CQO}=22^{\circ}$
22. (d) $\Delta \mathrm{ABC} \sim \Delta \mathrm{EDF}$
$\frac{\operatorname{Ar}(\triangle \mathrm{ABC})}{\operatorname{Ar}(\triangle \mathrm{EDF})}=\frac{49}{4}$
$\left(\frac{\mathrm{AC}}{\mathrm{EF}}\right)^{2}=\frac{49}{4}$

$\frac{\mathrm{AC}}{\mathrm{EF}}=\frac{7}{2} \Rightarrow \frac{14}{\mathrm{EF}}=\frac{7}{2}$
$\mathrm{EF}=4 \mathrm{~cm}$
23. (d) $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{B}=180^{\circ}-90^{\circ}-42^{\circ}$
$\angle \mathrm{B}=48^{\circ}$
$\mathrm{OB}=\mathrm{OC}$
$\angle \mathrm{OBC}=\angle \mathrm{OCB}=48^{\circ}$

$\angle \mathrm{BOC}+\angle \mathrm{OBC}+\angle \mathrm{OCB}=180^{\circ}$
$\angle \mathrm{BOC}=180^{\circ}-48^{\circ}-48^{\circ}$
$\angle \mathrm{BOC}=84^{\circ}$
24. (a) $\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$
$\frac{\operatorname{Ar}(\triangle \mathrm{ABC})}{\mathrm{Ar}(\triangle \mathrm{PQR})}=\left(\frac{\text { Perimeters } \triangle \mathrm{ABC}}{\text { Perimeters } \triangle \mathrm{PQR}}\right)^{2}$
$=\left(\frac{72}{43.2}\right)^{2}=\left(\frac{5}{3}\right)^{2}=\frac{25}{9}$
$=25: 9$
25. (a) If a circle touches all four sides of a quadrilateral PQRS.
then, $\mathrm{PQ}+\mathrm{RS}=\mathrm{SP}+\mathrm{RQ}$
$\mathrm{RS}=8+12-11$
$=9 \mathrm{~cm}$
26. (d) $P Q=P R$

$\mathrm{QO}=\mathrm{OP}=7$ (radius)
$\mathrm{PQ}=\sqrt{\mathrm{QO}^{2}+\mathrm{PO}^{2}}$
$=\sqrt{7^{2}+7^{2}}=\sqrt{98}$
$\mathrm{PQ}=7 \sqrt{2} \mathrm{~cm}$
27. (a) $\angle \mathrm{ABC}=\frac{5}{8} \angle \mathrm{BAC}$
$\angle \mathrm{ABC}=5 x, \angle \mathrm{BAC}=8 x$
$\Rightarrow \angle \mathrm{ABC}+\angle \mathrm{BAC}=\angle \mathrm{ACD}$

$\Rightarrow 5 x+8 x=117^{\circ} \Rightarrow x=9$
$\angle \mathrm{ABC}=5 \times 9=45^{\circ}$
28. (b) $\operatorname{Ar}(\triangle \mathrm{ABC})=\operatorname{Ar}(\triangle \mathrm{ADC})$
$\frac{1}{2} \times 12.8 \times \mathrm{h}=\frac{1}{2} \times 9.6 \times 12$
$h=\frac{9.6 \times 12}{12.8}=9 \mathrm{~m}$

29. (b) $A C^{2}=A B^{2}+B C^{2}$
$\Rightarrow \mathrm{AC}=\sqrt{64+225}$
$\Rightarrow \mathrm{AC}=17 \mathrm{~cm}$
$\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}$

$\Rightarrow \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{8}{17} \Rightarrow \mathrm{BD}+\mathrm{DC}=8 x+17 x=25 x$
$\mathrm{BD}=15 \times \frac{8}{25}=4.8 \mathrm{~cm}$
30. (d) $\angle \mathrm{ABC}+\angle \mathrm{ADC}=180^{\circ}$
$\angle \mathrm{ABC}=180^{\circ}-118^{\circ}=62^{\circ}$
$\angle \mathrm{ABC}=90^{\circ}$ (angle formed by diameter of the cirde)
$\triangle \mathrm{ABC}$,

$\angle \mathrm{BAC}=180^{\circ}-\angle \mathrm{ACB}-\angle \mathrm{ABC}$
$\angle \mathrm{BAC}=180^{\circ}-90^{\circ}-62^{\circ}=28^{\circ}$
31. (d) $\angle \mathrm{BED}=180^{\circ}-125^{\circ}$
$=55^{\circ}$
$\angle \mathrm{BDE}=180^{\circ}-\angle \mathrm{BED}-\angle \mathrm{EBD}$
$\angle \mathrm{BDE}=180^{\circ}-55^{\circ}-28=97^{\circ}$
$\angle \mathrm{BDE}=\angle \mathrm{BDC}=97^{\circ}$

so, $\angle \mathrm{BAC}=\angle \mathrm{BDC}$ (same segment theorem)
$\angle \mathrm{BAC}=97^{\circ}$
32. (c) \triangle PTQ
$\angle \mathrm{QPT}=180^{\circ}-90^{\circ}-70^{\circ}$
$\angle \mathrm{QPT}=20^{\circ}$
$\angle \mathrm{PQR}$
$\angle \mathrm{P}=180^{\circ}-70^{\circ}-55^{\circ}=55^{\circ}$

$\angle \mathrm{POR}=2 \angle \mathrm{PQR}$ (Angle at O are doubled of angle at circumference)
$\angle \mathrm{POR}=2 \times 70=140^{\circ}$
In $\triangle \mathrm{POR}, \mathrm{PO}=\mathrm{OR}$ (radius),$\angle \mathrm{OPR}=\angle \mathrm{ORP}$
$\angle \mathrm{OPR}=\frac{180^{\circ}-\angle \mathrm{POR}}{2}=\frac{180^{\circ}-140^{\circ}}{2}=20^{\circ}$
$\angle \mathrm{TPS}=\angle \mathrm{QPR}-(\angle \mathrm{QPT}+\angle \mathrm{OPR})$
$=55^{\circ}-\left(20^{\circ}+20^{\circ}\right)$

6 - SSC Maths
$\angle \mathrm{TPS}=15^{\circ}$
33. (d) $\Delta \mathrm{CDE}$ and $\Delta \mathrm{CAB}$
$\frac{\mathrm{CD}}{\mathrm{AC}}=\frac{\mathrm{CE}}{\mathrm{CB}}=\frac{\mathrm{DC}}{\mathrm{AD}+\mathrm{DC}}$
$\frac{\mathrm{CD}}{\mathrm{AC}}=\frac{10}{15+10}=\frac{10}{25}=\frac{2}{5}=\frac{\mathrm{CE}}{\mathrm{CB}}$

$\Delta \mathrm{CEF}$ and $\Delta \mathrm{CDB}$
$\frac{5}{\mathrm{OA}} \Rightarrow \frac{\sqrt{3}}{2}=\frac{5}{\mathrm{OA}}$
$\frac{\mathrm{CF}}{10}=\frac{2}{5}$
$C F=4 \mathrm{~cm}$.
34. (c) $\mathrm{AC}=\mathrm{CB}=8 \mathrm{~cm}$
$\mathrm{OC}=\sqrt{\mathrm{OA}^{2}-\mathrm{AC}^{2}}=\sqrt{289-64}$

$\mathrm{OC}=15 \mathrm{~cm}$
$\mathrm{PC}=\sqrt{\mathrm{AP}^{2}+\mathrm{AC}^{2}}=\sqrt{100-64}$
$P C=6 \mathrm{~cm}$
$\mathrm{OP}=\mathrm{OC}+\mathrm{PC}=15+6=21 \mathrm{~cm}$
Perimeter of $\triangle \mathrm{OAP}=17+10+21=48 \mathrm{~cm}$
35. (c) $\mathrm{AC}=\mathrm{CB}$
$\mathrm{O}_{1} \mathrm{~A}=\mathrm{O}_{2} \mathrm{~A}=\mathrm{O}_{1} \mathrm{O}_{2}=8 \mathrm{~cm}$ (radius)
$\mathrm{QC}=\mathrm{O}_{2} \mathrm{C}=4 \mathrm{~cm}$
$\mathrm{AC}=\sqrt{\mathrm{O}_{1} \mathrm{~A}^{2}-\mathrm{O}_{1} \mathrm{C}^{2}}=\sqrt{64-16}$
$A C=\sqrt{48}=4 \sqrt{3} \mathrm{~cm}$
$\mathrm{AB}=2 \times \mathrm{AC}=2 \times 4 \sqrt{3}=8 \sqrt{3} \mathrm{~cm}$.
36. (a) The median are divided into a $2: 1$ ratio by centroid
so, $\mathrm{CG}=8 \mathrm{~cm}$
$\mathrm{GD}=4 \mathrm{~cm}$
$C D=12 \mathrm{~cm}$
$\mathrm{AD}=\mathrm{BD}=5 \mathrm{~cm}$
$\mathrm{AC}=\sqrt{\mathrm{AD}^{2}+\mathrm{CD}^{2}}=\sqrt{25+144}$
$\mathrm{AC}=13 \mathrm{~cm}$
37. (b) $\angle \mathrm{BOC}=2 \angle \mathrm{BAC}$
$\angle \mathrm{BOC}=2 \times 65^{\circ}=130^{\circ}$
$\angle \mathrm{OBP}=\angle \mathrm{OCP}=90^{\circ}$

$\angle \mathrm{BOC}+\angle \mathrm{OBP}+\angle \mathrm{OCP}+\angle \mathrm{BPC}=360^{\circ}$
$\angle \mathrm{BPC}=360^{\circ}-130^{\circ}-90^{\circ}-90^{\circ}=50^{\circ}$
Sol. 38 : (a) $\mathrm{OM}^{2}=\mathrm{NO}^{2}+\mathrm{MN}^{2}$
$\mathrm{Om}=\sqrt{9^{2}+12^{2}}$
$=\sqrt{81+144}$

$\mathrm{OM}=15 \mathrm{~cm}$
39. (a) $\angle \mathrm{PQR}=\frac{3}{5} \angle \mathrm{QPR}$ $\angle \mathrm{QPR}+\angle \mathrm{PQR}=\angle \mathrm{PRS}$
$\angle \mathrm{QPR}+\frac{3}{5} \angle \mathrm{QPR}=104^{\circ}$
$\frac{8}{5} \angle \mathrm{QPR}=104^{\circ}$
$\angle \mathrm{QPR}=\frac{104 \times 5^{\circ}}{8}=65^{\circ}$
40. (d) $\mathrm{AB}=9 \mathrm{~cm}$
$\mathrm{PB}=\frac{1}{3} \mathrm{AB}=3 \mathrm{~cm}$
$\mathrm{PA} \times \mathrm{PB}=\mathrm{PC} \times \mathrm{PD}$
$12 \times 3=(5+\mathrm{PD}) \times \mathrm{PD}$

$\mathrm{PD}^{2}+5 \mathrm{PD}-36=0$
$(\mathrm{PD}+9)(\mathrm{PD}+4)=0$
$\mathrm{PD}=-9$ [Negative]
$\mathrm{PD}=4 \mathrm{~cm}$

EXERCISE 18C

For SSC CGL and CPO Exams

1. In $\triangle \mathrm{ABC}$, the perpendiculars drawn from A, B and C meet the opposite sides at points D, E and F respectively, AD, BE and CF intersect at point P . If $\angle \mathrm{EPD}=110^{\circ}$ and the bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}$ meet at point Q , then $\angle \mathrm{AQB}=$?

SSC CGL 21/04/2022 (Shift-2)
(a) 115°
(b) 110°
(c) 135°
(d) 125°
2. O is the center of a circle of radius 10 cm . P is a point outside the circle and PQ is the tangent to the circle. What is the length of PQ if the length of OP is 26 cm ?

SSC CGL 21/04/2022 (Shift-1)
(a) $2 \sqrt{294}$
(b) 20
(c) 25
(d) 24
3. In a $\triangle A B C, D, E$ and F are the mid-points of side $B C, C A$ and AB respectively. If $\mathrm{BC}=25.6 \mathrm{~cm}, \mathrm{CA}=18.8 \mathrm{~cm}$ and $\mathrm{AB}=20.4 \mathrm{~cm}$, what is the perimeter $(\mathrm{in} \mathrm{cm})$ of the $\triangle \mathrm{DEF}$?

SSC CGL 21/04/2022 (Shift-1)
(a) 36.8
(b) 30.6
(c) 32.4
(d) 34.4
4. In a triangle ABC , the bisector of angle BAC meets BC at point D in such a way that $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{AC}=15 \mathrm{~cm}$ and $\mathrm{BD}=6 \mathrm{~cm}$. Find the length of BC (in cm)

SSC CGL 21/04/2022 (Shift-1)
(a) 17
(b) 11
(c) 15
(d) 9
5. The radii of two concentric circles with center O are 26 cm and 16 cm . Chord AB of the larger circle is tangent to the smaller circle at C and AD is a diameter. What is the Length of CD?

SSC CGL 21/04/2022 (Shift-1)
(a) 42
(b) 36
(c) 35
(d) 38
6. A circle is circumscribed on a quadrilateral $A B C D$, If $\angle \mathrm{DAB}=100^{\circ}, \angle \mathrm{ADB}=35^{\circ}$ and $\angle \mathrm{CDB}=40^{\circ}$, then find the measure of $\angle \mathrm{DBC}$.

SSC CGL 20/04/2022 (Shift-3)
(a) 35°
(b) 60°
(c) 45°
(d) 40°
7. PQRS is a cyclic quadrilateral and PQ is a diameter of the circle. If $\angle \mathrm{RPQ}=23^{\circ}$, then what is the measure of $\angle \mathrm{PSR}$?

SSC CGL 20/04/2022 (Shift-3)
(a) 113°
(b) 157°
(c) 147°
(d) 123°
8. In a right triangle $A B C$, right angle at B, altitude $B D$ is drawn to the hypotenuse AC of the triangle. If $\mathrm{AD}=6 \mathrm{~cm}$, $\mathrm{CD}=5 \mathrm{~cm}$, then find the value of $\mathrm{AB}^{2}+\mathrm{BD}^{2}\left(\right.$ in $\left.\mathrm{cm}^{2}\right)$

SSC CGL 20/04/2022 (Shift-1)
(a) 30
(b) 96
(c) 36
(d) 66
9. In a circle with center O, PA and PB are tangents to the circle at point A and point B , respectively, C is a point on the major arc $A B$, If $\angle A C B=50^{\circ}$, then find the measure of $\angle \mathrm{APB}$.

SSC CGL 20/04/2022 (Shift-1)
(a) 100°
(b) 90°
(c) 80°
(d) 50°
10. A triangle with the lengths of its sides proportional to the numbers 7,24 , and 30 is:

SSC CGL 20/04/2022 (Shift-1)
(a) acute angled
(b) obtuse angled
(c) not possible
(d) right angled
11. Points A and B are on a circle with center O. PA and PB are tangents to the circle from external point P . If PA and PB are inclined to each other at 42°, then find the measure of $\angle \mathrm{OAB}$

SSC CGL 20/04/2022 (Shift-1)
(a) 42°
(b) 21°
(c) 69°
(d) 25°
12. In a right angled triangle, the length of the median from the vertices of acute angle are 7 cm and $4 \sqrt{6} \mathrm{~cm}$ What is the length of the hypotenuse of the triangle (in cm)?

SSC CGL 19/04/2022 (Shift-3)
(a) $3.5+2 \sqrt{6}$
(b) $\frac{5}{2} \sqrt{29}$
(c) $\sqrt{29}$
(d) $2 \sqrt{29}$
13. $A B$ is a chord of a circle with centre $O . C$ is a point on the circumference of the circle in the minor sector. If $\angle \mathrm{ABO}=40^{\circ}$ what is the measure (in degree) of $\angle \mathrm{ACB}$?

SSC CGL 19/04/2022 (Shift-3)
(a) 110°
(b) 130°
(c) 100°
(d) 120°
14. Chords $A B$ and $C D$ of a circle intersect externally at P. If $\mathrm{AB}=7 \mathrm{~cm}, \mathrm{CD}=1 \mathrm{~cm}$ and $\mathrm{PD}=5 \mathrm{~cm}$, then 50% of the length of $\mathrm{PA}(\mathrm{in} \mathrm{cm})$ is:

SSC CGL 19/04/2022 (Shift-2)
(a) 5
(b) 10
(c) 8
(d) 3
15. A circle is inscribed in $\triangle \mathrm{ABC}$, touching AB, BC and $A C$ at points P, Q and R, respectively. If $A B-B C=4 \mathrm{~cm}$, $\mathrm{AB}-\mathrm{AC}=2 \mathrm{~cm}$ and the perimeter of $\triangle \mathrm{ABC}=32 \mathrm{~cm}$, then $\frac{B C}{2}($ in cm$)=$?

SSC CGL 19/04/2022 (Shift-2)

(a) $\frac{20}{3}$
(b) $\frac{13}{3}$
(c) $\frac{11}{3}$
(d) $\frac{10}{3}$
16. In $\triangle \mathrm{ABC}, \angle \mathrm{A}=66^{\circ}, \mathrm{BD} \perp \mathrm{AC}$ and $\mathrm{CE} \perp \mathrm{AB}, \mathrm{BD}$ and EC intersect at P . The bisectors $\angle \mathrm{PBC}$ and $\angle \mathrm{PCB}$ meet at Q What is the measure of $\angle \mathrm{BQC}$?

SSC CGL 19/04/2022 (Shift-2)
(a) 127°
(b) 132°
(c) 143°
(d) 147°
17. The circumcenter of an equilateral triangle is at a distance of 3.2 cm from the base of the triangle. What is the length (in cm) of each of its altitudes?

SSC CGL 19/04/2022 (Shift-2)
(a) 9.6
(b) 7.2
(c) 6.4
(d) 12.8
18. Let $\Delta \mathrm{ABC} \sim \Delta \mathrm{QPR}$ and (Area of $\Delta \mathrm{ABC}$) : (Area of $\Delta \mathrm{PQR})=121: 64$. If $\mathrm{QP}=14.4 \mathrm{~cm}, \mathrm{PR}=12 \mathrm{~cm}$, and AC $=18 \mathrm{~cm}$. Then what is the length of AB (in cm) ?

SSC CGL 19/04/2022 (Shift-1)
(a) 32.4
(b) 21.6
(c) 19.8
(d) 16.2
19. $P Q$ and $R S$ are two parallel chords of a circle of length 14 cm and 48 cm , respectively, and lie on the same side of the centre O . If the distance between the chords is 17 cm , what is the radius of the circle?

SSC CGL 19/04/2022 (Shift-1)
(a) 28
(b) 24
(c) 25
(d) 20
20. In $\triangle P Q R, S$ is a point on the side $Q R$ such that $P S$ is the bisector of $\angle \mathrm{QPR}$. If $\mathrm{PQ}=12 \mathrm{~cm}, \mathrm{QS}=3 \mathrm{~cm}$ and $\mathrm{QR}=7 \mathrm{~cm}$. What is the length of PR?

SSC CGL 18/04/2022 (Shift-3)
(a) 18
(b) 14
(c) 15
(d) 16
21. Triangle $A B C$ is right angled at $B . B D$ is an altitude intersecting AC at D . If $\mathrm{AC}=9 \mathrm{~cm}$ and $\mathrm{CD}=3 \mathrm{~cm}$, then find the measure of $A B$ (in cm).

SSC CGL 24/08/2021 (Shift-3)
(a) 3
(b) $6 \sqrt{3}$
(c) 6
(d) $3 \sqrt{6}$
22. In a circle with centre O, points A, B, C and D in this order are concyclic such that BD is a diameter of the circle. If $\angle \mathrm{BAC}=22^{\circ}$. Then find the measure (in degrees) of $\angle \mathrm{COD}$.

SSC CGL 24/08/2021 (Shift-3)
(a) 158
(b) 68
(c) 79
(d) 136
23. Triangles $A B C$ is right angled at B and D is a point of BC such that $\mathrm{BD}=5 \mathrm{~cm}, \mathrm{AD}=13 \mathrm{~cm}$ and $\mathrm{AC}=37 \mathrm{~cm}$, then find the length of DC in cm .

SSC CGL 24/08/2021 (Shift-3)
(a) 25
(b) 35
(c) 5
(d) 30
24. In a circle with centre O, a diameter $A B$ is produced to a point P lying outside the circle and PT is a tangent to the circle at a point C on it, If $\angle \mathrm{BPT}=28^{\circ}$, then what is the measure of $\angle \mathrm{BCP}$?

SSC CGL 24/08/2021 (Shift-3)

(a) 28°
(b) 31°
(c) 62°
(d) 45°
25. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$, we have $\frac{A B}{D F}=\frac{B C}{D E}=\frac{A C}{E F}$, then which of the following is true?

SSC CGL 24/08/2021 (Shift-2)

(a) $\triangle \mathrm{DEF} \sim \triangle \mathrm{ABC}$
(c) $\triangle \mathrm{CAB} \sim \triangle \mathrm{DEF}$
(b) $\triangle \mathrm{CAB} \sim \triangle \mathrm{DEF}$
(d) $\triangle \mathrm{DEF} \sim \triangle \mathrm{BAC}$

26 Points M and N are on the sides PQ and QR respectively of a triangle $P Q R$, right angled at Q . If $P N=9 \mathrm{~cm}$, $\mathrm{MR}=7 \mathrm{~cm}$, and $\mathrm{MN}=3 \mathrm{~cm}$, then find the length of PR (in cm).
(a) 13
(b) 11
(c) 12
(d) $\sqrt{41}$
27. In a circle with centre $O, A B$ is a chord of length 10 cm . Tangents at points A and B intersect outside the circle at P . If $\mathrm{OP}=2 \mathrm{OA}$, then find the length (in cm) of AP .

SSC CGL 24/08/2021 (Shift-2)
(a) 10
(b) 12
(c) 12.5
(d) 15
28. Points A, B and C are on a circle with centre O such that $\angle \mathrm{BOC}=84^{\circ}$. If AC is produced to a point D such that $\angle \mathrm{BDC}=40^{\circ}$, then find the measure of $\angle \mathrm{ABD}$ (in degrees).

SSC CGL 24/08/2021 (Shift-2)
(a) 92
(b) 102
(c) 56
(d) 98
29. The vertices of a $\triangle \mathrm{ABC}$ lie on a circle with centre O . AO is produced to meet the circle at the point $\mathrm{P} . \mathrm{D}$ is a point on BC such that $\mathrm{AD} \perp \mathrm{BC}$. If $\angle \mathrm{B}=68^{\circ}$ and $\angle \mathrm{C}=52^{\circ}$, then the measure of $\angle \mathrm{DAP}$ is:

SSC CGL 24/08/2021 (Shift-1)
(a) 28°
(b) 16°
(c) 12°
(d) 18°
30. ABCD is a cyclic quadrilateral such that when sides AB and DC are produced, they meet at E , and sides AD and BC meet at F , when produced. If $\angle \mathrm{ADE}=80^{\circ}$ and $\angle \mathrm{AED}=50^{\circ}$, then what is the measure of $\angle \mathrm{AFB}$?

SSC CGL 24/08/2021 (Shift-1)
(a) 30°
(b) 40°
(c) 20°
(d) 50°
31. Let $\triangle \mathrm{ABC} \sim \triangle \mathrm{RPQ}$ and $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle R P Q)}=\frac{16}{25}$, If $\mathrm{PQ}=$ $4 \mathrm{~cm}, \mathrm{QR}=6 \mathrm{~cm}$ and $\mathrm{PR}=7 \mathrm{~cm}$, then AC (in cm) is equal to: SSC CGL 24/08/2021 (Shift-1)
(a) 7.2
(b) 6
(c) 4.8
(d) 3.6
32. The area of table top in the shape of an equilateral triangle is $9 \sqrt{3} \mathrm{~cm}^{2}$ What is the length (in cm) of each side of the table?

SSC CGL 24/08/2021 (Shift-1)
(a) 6
(b) 2
(c) 4
(d) 3
33. The bisector of $\angle A$ in $\triangle A B C$ meets side $B C$ at D. If $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{AC}=15 \mathrm{~cm}$ and $\mathrm{BC}=18 \mathrm{~cm}$, then the length of DC is:

SSC CGL 23/08/2021 (Shift-3)
(a) 9 cm
(b) 6 cm
(c) 10 cm
(d) 8 cm
34. Triangles ABC and DBC are right angled triangles with common hypotenuse BC . BD and AC intersect at P , when produced. If $\mathrm{PA}=8 \mathrm{~cm}, \mathrm{PC}=4 \mathrm{~cm}$ and $\mathrm{PD}=3.2$, then the length of BD , in cm , is:

SSC CGL 23/08/2021 (Shift-3)
(a) 5.6
(b) 7.2
(c) 6.4
(d) 6.8
35. $\triangle \mathrm{ABC}$ is an equilateral triangle with side $18 \mathrm{~cm}, \mathrm{D}$ is a point on BC such that $\mathrm{BD}=\frac{1}{3} \mathrm{BC}$, Then length (in cm) of AD is:

SSC CGL 23/08/2021 (Shift-3)
(a) $6 \sqrt{3}$
(b) $6 \sqrt{7}$
(c) $7 \sqrt{6}$
(d) $8 \sqrt{3}$
36. In the triangle $A B C, D$ and E are mid-points of $A B$ and BC respectively. If area $(\triangle \mathrm{CED})=8 \mathrm{~cm}^{2}$, then what is the area (ADEC) in cm^{2}

SSC CGL 23/08/2021 (Shift-2)
(a) 21
(b) 32
(c) 24
(d) 16
37. A tangent is drawn from a point P to a circle, which meets the circle at T such that $\mathrm{PT}=8 \mathrm{~cm}$. A secant PAB intersects the circle in points A and B . If $\mathrm{PA}=5 \mathrm{~cm}$, what is the length (in cm) of the chord AB ?

SSC CGL 23/08/2021 (Shift-2)
(a) 6.4
(b) 8.4
(c) 7.8
(d) 8.0
38. In $\triangle \mathrm{ABC}, \mathrm{D}$ is a point on BC such that $\angle \mathrm{BAD}=\frac{1}{2}$ $\angle \mathrm{ADC}$ and $\angle \mathrm{BAC}=77^{\circ}$ and $\angle \mathrm{C}=45^{\circ}$, What is the measure of $\angle \mathrm{ADB}$?

SSC CGL 23/08/2021 (Shift-2)

(a) 64°
(b) 77°
(c) 45°
(d) 58°
39. A circle is inscribed in a quadrilateral $A B C D$, touching sides $A B, B C, C D$ and $D A$ at P, Q, R and S, respectively. If $\mathrm{AS}=6 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm}$, and $\mathrm{CR}=5 \mathrm{~cm}$, then the length of $A B$ (in cm) is:

SSC CGL 23/08/2021 (Shift-1)
(a) 13
(b) 11
(c) 15
(d) 12
40. Vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D of a quadrilateral ABCD lie on a circle. $\angle \mathrm{A}$ is three times $\angle \mathrm{C}$ and $\angle \mathrm{D}$ is two times $\angle \mathrm{B}$. What is the difference between the measures of $\angle \mathrm{D}$ and $\angle \mathrm{C}$?

SSC CGL 23/08/2021 (Shift-1)
(a) 55°
(b) 65°
(c) 75°
(d) 45°

SOLUTIONS

1. (d) In quadrilateral, PECD,
$\angle \mathrm{PEC}+\angle \mathrm{ECD}+\angle \mathrm{CDP}+\angle \mathrm{DPE}=360^{\circ}$
$\Rightarrow 90^{\circ}+\angle \mathrm{ECD}+90^{\circ}+110^{\circ}=360^{\circ}$
$\Rightarrow \angle \mathrm{ECD}=70^{\circ}$
Now, in $\triangle \mathrm{AQB}$,

$\angle \mathrm{BAQ}+\angle \mathrm{AQB}+\angle \mathrm{QBA}=180^{\circ}$
$\Rightarrow \frac{\sqrt{\mathrm{A}}}{2}+\angle \mathrm{AQB}+\frac{\angle \mathrm{B}}{2}=180^{\circ}$
$\Rightarrow \angle \mathrm{AQB}=180^{\circ}-\left(\frac{\angle \mathrm{A}}{2}+\frac{\angle \mathrm{B}}{2}\right)$
$=180^{\circ}-\left(90^{\circ}-\frac{\angle \mathrm{C}}{2}\right)$
$=90^{\circ}+\frac{70^{\circ}}{2}$
$=90^{\circ}+35^{\circ}=125^{\circ}$
2. (d) ATQ ,
we know that radius is perpendicular to tangent, i.e
$\angle \mathrm{OQP}=90^{\circ}$

In $\triangle \mathrm{OQP}$,
$(\mathrm{OP})^{2}=(\mathrm{OQ})^{2}+(\mathrm{QP})^{2}$
$\Rightarrow(26)^{2}=(10)^{2}+(\mathrm{QP})^{2}$
$\Rightarrow(\mathrm{QP})^{2}=676-100$

$\Rightarrow \mathrm{QP}=\sqrt{576}=24 \mathrm{~cm}$
3. (c) ATQ ,
we know that if E and F are mid-points then
EF \| CB
and $\mathrm{EF}=\frac{1}{2} \times \mathrm{CB}$
similarly,
$\mathrm{DE}=\frac{1}{2} \times \mathrm{AB}$

and $\mathrm{FD}=\frac{1}{2} \times \mathrm{AC}$
So, perimeter of $\Delta \mathrm{DEF}=\mathrm{DE}+\mathrm{EF}+\mathrm{FD}$
$=\sqrt{2 r^{2}}=\sqrt{2} \mathrm{r}(\mathrm{AB}+\mathrm{CB}+\mathrm{AC})$
$=\frac{1}{2}(20.4+25.6+18.8)$
$=\frac{1}{2} \times 64.8=32.4 \mathrm{~cm}$
4. (c) since, AD is angle bisector line
$\therefore \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{DC}}$
$\Rightarrow \frac{10}{15}=\frac{6}{x}$
$\Rightarrow \frac{2}{3}=\frac{6}{x}$

$\Rightarrow \mathrm{x}=\frac{6 \times 3}{2}=9 \mathrm{~cm}$
$\therefore \mathrm{BC}=\mathrm{BD}+\mathrm{DC}$
$=6+9=15 \mathrm{~cm}$
5. (b) Given, $\mathrm{OA}=\mathrm{OD}=26 \mathrm{~cm}$ and $\mathrm{OC}=16 \mathrm{~cm}$
we know that $\mathrm{OC} \perp \mathrm{AB}$
and $\mathrm{AC}=\mathrm{CB}$
if a line divides any two sides in same ratio

$\frac{\mathrm{AO}}{\mathrm{OD}}=\frac{\mathrm{AC}}{\mathrm{CB}}$, then the line is parallel to the third side
$\therefore \mathrm{BD} \| \mathrm{OC}$
and $\mathrm{BD}=2 \times \mathrm{OC}=2 \times 16=32 \mathrm{~cm}$
in $\triangle \mathrm{AOC}, \mathrm{AC}=\sqrt{26^{2}-16^{2}}=\sqrt{420} \mathrm{~cm}=\mathrm{BC}$
in $\triangle \mathrm{BCD}, \mathrm{CD}=\sqrt{32^{2}+(\sqrt{420})^{2}}=\sqrt{1444}=38$
so, the length of CD is 38 cm
6. (b) we know that ABCD is cyclic quadrilateral
$\angle \mathrm{DAB}+\angle \mathrm{BCD}=180^{\circ}$
$\Rightarrow 100^{\circ}+\angle \mathrm{BCD}=180^{\circ}$
$\Rightarrow \angle \mathrm{BCD}=80^{\circ}$

In $\triangle \mathrm{BCD}$,
$\angle \mathrm{BCD}+\angle \mathrm{CBD}+\angle \mathrm{DBC}=180^{\circ}$
$\Rightarrow 80^{\circ}+40^{\circ}+\angle \mathrm{DBC}=180^{\circ}$
$\Rightarrow \angle \mathrm{DBC}=180^{\circ}-120^{\circ}$
$=60^{\circ}$
7. (a) ATQ ,

We know that angle in semi - circle is 90°, i . e
$\angle \mathrm{PRQ}=90^{\circ}$
In $\triangle \mathrm{PRQ}$,
$\angle \mathrm{P}+\angle \mathrm{R}+\angle \mathrm{Q}=180^{\circ}$
$\Rightarrow 23^{\circ}+90^{\circ}+\angle \mathrm{Q}=180^{\circ}$
$\Rightarrow \angle \mathrm{Q}=180^{\circ}-113^{\circ}=67^{\circ}$
we know that

$\angle \mathrm{S}+\angle \mathrm{Q}=180^{\circ}$ (cyclic quadrilatral)
$\Rightarrow \angle \mathrm{S}=180^{\circ}-67^{\circ}=113^{\circ}$
$\Rightarrow \angle \mathrm{PSR}=113^{\circ}$
8. (b) ATQ ,

In $\triangle \mathrm{ABC}$,
$\mathrm{AB}^{2}=\mathrm{AC}^{2}-\mathrm{BC}^{2}$
And in $\triangle \mathrm{BDC}$,
$\mathrm{BD}^{2}=\mathrm{BC}^{2}-\mathrm{DC}^{2}$

On adding Eqs (i) and (ii), we get
$\mathrm{AB}^{2}+\mathrm{BD}^{2}=\mathrm{AC}^{2}-\mathrm{DC}^{2}$
$=(6+5)-(5)^{2}=121-25=96$
9. (c) ATQ ,

We know that
$\angle \mathrm{PAO}=\angle \mathrm{PBO}=90^{\circ}$ (Tangent and raduies) and
$\angle \mathrm{AOB}=2 \angle \mathrm{ACB}$
$=2 \times 50^{\circ}=100^{\circ}$
Now, in quadrilateral PAOB,

$\angle \mathrm{PAO}+\angle \mathrm{AOB}+\angle \mathrm{OBP}+\angle \mathrm{BPA}=360^{\circ}$
$\Rightarrow \angle \mathrm{APB}=360^{\circ}-90^{\circ}-100^{\circ}-90^{\circ}=80^{\circ}$
10. (b) Let $\mathrm{a}=7, \mathrm{~b}=24, \mathrm{c}=30$

There, $\mathrm{a}^{2}+\mathrm{b}^{2}=7^{2}+24^{2}=25^{2}=625$
And $c^{2}=30^{2}=900$
$\Rightarrow \mathrm{a}^{2}+\mathrm{b}^{2}<\mathrm{c}^{2}$
So, it is a obtuse angled triangle
11. (b) :

In quadrilateral,
$\angle \mathrm{AOB}=360^{\circ}-\left(90^{\circ}+90^{\circ}+42^{\circ}\right)=138^{\circ}$

Now, $\mathrm{OA}=\mathrm{OB}$ (radius)
$\therefore \angle \mathrm{OAB}=\angle \mathrm{OBA}$ (opposite angles
to equal sides are equal)
In $\triangle \mathrm{AOB}$,
$\angle \mathrm{AOB}+\angle \mathrm{OBA}+\angle \mathrm{OAB}=180^{\circ}$
$\Rightarrow 138^{\circ}+\angle \mathrm{OAB}+\angle \mathrm{OAB}=180^{\circ}$
$\Rightarrow \angle \mathrm{OAB}=\frac{42^{\circ}}{2}=21^{\circ}$
12. (d) In right angled triangled AD and CE are medians, then
$4\left(\mathrm{AD}^{2}+\mathrm{CE}^{2}\right)=5 \mathrm{AC}^{2}$
$\Rightarrow 4\left[7^{2}+(4 \sqrt{6})^{2}\right]=5 \mathrm{AC}^{2}$
$\Rightarrow \mathrm{AC}^{2}=\frac{580}{5}$
$\Rightarrow \mathrm{AC}=2 \sqrt{29} \mathrm{~cm}$
13. (b) ATQ, :

Here, $\mathrm{OA}=\mathrm{OB}$ (radius)
$\therefore \angle \mathrm{OAB}=\angle \mathrm{OBA}=40^{\circ}$
$\Rightarrow \angle \mathrm{AOB}=180^{\circ}-\left(40^{\circ}+40^{\circ}\right)$
$=100^{\circ}$
Now,
$\angle \mathrm{ADB}=\frac{1}{2} \times \angle \mathrm{AOB}=50^{\circ}$

we know that ACBD is cyclic quadrilateral,
$\therefore \angle \mathrm{ACB}+\angle \mathrm{ADB}=180^{\circ}$
$\Rightarrow \angle \mathrm{ACB}=180^{\circ}-50^{\circ}=130^{\circ}$
14. (a) ATQ,

Let $\mathrm{PB}=x$
We know that if two chords of a circle intersect externally, then the product of the length of the segments are equal, i.e.
$\mathrm{PA} \times \mathrm{PB}=\mathrm{PC} \times \mathrm{PD}$
$\Rightarrow(x+7) x=(5+1) \times 5$
$\Rightarrow x^{2}+7 x-30=0$
$\Rightarrow x^{2}+10 x-3 x-30=0$
$\Rightarrow x(x+10)-3(x+10)=0$

$\Rightarrow(x-3)(x+10)=0$
$\Rightarrow x=3, x=-10$ (invalid)
$\therefore 50 \%$ of $\mathrm{PA}=\frac{1}{2} \times(7+3)=5 \mathrm{~cm}$
15. (b)

Given,
$\mathrm{AB}-\mathrm{BC}=4-\ldots--$ (i)
$A B-A C=2$------ (ii)
$\mathrm{AB}+\mathrm{BC}+\mathrm{CA}=32$
from Eqs. (i), (ii) and (iii),
$3 \mathrm{AB}=38$
$\Rightarrow \mathrm{AB}=\frac{38}{3} \mathrm{~cm}$
Now, from Eq. (i); we have
 $\frac{38}{3}-\mathrm{BC}=4$
$\stackrel{3}{\Rightarrow} \mathrm{BC}=\frac{38}{3}-4=\frac{26}{3} \mathrm{~cm}$
$\therefore \frac{\mathrm{BC}}{2}=\frac{26}{3 \times 2}=\frac{13}{3} \mathrm{~cm}$
16. (d) :

In quad. AEPD,
$\angle E P D=360^{\circ}-\left(90^{\circ}+90^{\circ}+66^{\circ}\right)$
$=114^{\circ}$
NOW, $\angle \mathrm{EPD}=\angle \mathrm{BPC}$
$=114^{\circ}$ (vertically opposite angles)
$\therefore \angle \mathrm{BQC}=90^{\circ}+\frac{\angle \mathrm{BPC}}{2}$

$=90^{\circ}+\frac{\mathrm{AD}^{2}}{4}$
$=147^{\circ}$
17. (a)

We know that for an equilateral triangle circumcentre is the centroid, i.e.
$\therefore \mathrm{OD}=\frac{1}{3} \times \mathrm{AD}$
$\Rightarrow 3.2=\frac{1}{3} \times \mathrm{AD}$
$\Rightarrow \mathrm{AD}=9.6 \mathrm{~cm}$
18. (c) ATQ,

If $\Delta \mathrm{ABC} \sim \Delta \mathrm{QPR}$
Then, $\frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{QPR}}=\frac{\mathrm{AB}^{2}}{\mathrm{QP}^{2}}$
$\Rightarrow \sqrt{\frac{121}{64}}=\frac{\mathrm{AB}}{14.4}$
$\Rightarrow \frac{11}{8}=\frac{\mathrm{AB}}{14.4}$

$\Rightarrow \mathrm{AB}=\frac{14.4 \times 11}{8}=19.8 \mathrm{~cm}$
19. (c)

Let $\mathrm{OM}=x$
and given $\mathrm{MT}=17 \mathrm{~cm}$
In \triangle OMR,
$(\mathrm{OR})^{2}=24^{2}+x^{2}$
and in \triangle OTP,
$(\mathrm{OP})^{2}=7^{2}+(x+17)^{2}$
Since, $\mathrm{OR}=\mathrm{OP}$ (radius)

$\therefore(\mathrm{OR})^{2}=(\mathrm{OP})^{2}$
$\Rightarrow 24^{2}+x^{2}=7^{2}+(x+17)^{2}$
$\Rightarrow 576+x^{2}=49+x^{2}+289+34 x$
$\Rightarrow 34 x=238$
$\Rightarrow x=7$
$\therefore(\mathrm{OR})^{2}=24^{2}+7^{2}=25^{2}$
$\Rightarrow \mathrm{OR}=25$
hence, radius of the circle is 25 cm
20. (d)

By angular bisector theorem,
$\frac{\mathrm{PQ}}{\mathrm{PR}}=\frac{\mathrm{QS}}{\mathrm{SR}} \Rightarrow \frac{12}{\mathrm{PR}}=\frac{3}{4}$
$\Rightarrow \mathrm{PR}=\frac{12 \times 4}{3}=16 \mathrm{~cm}$

21. (d) Let $\angle \mathrm{DCB}=\theta^{\circ}$

Then, $\angle \mathrm{DBC}=90^{\circ}-\theta$
Now, in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDC}$
$\angle \mathrm{B}=\angle \mathrm{D}\left(=90^{\circ}\right)$
And $\angle \mathrm{C}=\angle \mathrm{C}(=\theta)$
$\therefore \triangle \mathrm{ABC} \sim \Delta \mathrm{BDC}$
$\Rightarrow \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\mathrm{DC}}{\mathrm{BC}}$
$\Rightarrow \mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{DC}=9 \times 3=27$
In $\triangle \mathrm{ABC}$,
$(\mathrm{AB})^{2}+(\mathrm{BC})^{2}=(\mathrm{AC})^{2}$
$\Rightarrow(\mathrm{AB})^{2}+27=9^{2}$
$\Rightarrow \mathrm{AB}^{2}=81-27=54$
$\Rightarrow \mathrm{AB}=3 \sqrt{6} \mathrm{~cm}$
22. (d)

We know that
$\angle \mathrm{BAD}=90^{\circ}$
(angle in semi-curile)
$\therefore \angle \mathrm{CAD}=90^{\circ}-\angle \mathrm{BAC}$
$=90^{\circ}-22^{\circ}=68^{\circ}$
Now, angle made at the centre is

twice the angle made on the circumference of the same are
$\therefore \angle \mathrm{COD}=2 \times \angle \mathrm{CAD}$
$=2 \times 68^{\circ}=136^{\circ}$

23. (d)

In $\triangle \mathrm{ABD}$,
$\mathrm{AB}=\sqrt{13^{2}-5^{2}}=12 \mathrm{~cm}$
Now, in $\triangle \mathrm{ABC}$,
$\mathrm{BC}^{2}=37^{2}-12^{2}$
$\Rightarrow \mathrm{BC}=35 \mathrm{~cm}$
So, DC $=\mathrm{BC}-\mathrm{BD}$
$=35-5=30 \mathrm{~cm}$
24. (b)

In \triangle OCP,
$\angle \mathrm{OCP}+\angle \mathrm{CPO}+\angle \mathrm{COP}=180^{\circ}$
$\Rightarrow 90^{\circ}+28^{\circ}+\angle \mathrm{COP}=180^{\circ}$
$\Rightarrow \angle \mathrm{COP}=62^{\circ}$
We know that
$\mathrm{OB}=\mathrm{OC}$ (radius)
$\therefore \angle \mathrm{OBC}=\angle \mathrm{OCB}=\theta$

In $\triangle \mathrm{COB}$,
$\theta+\theta+62^{\circ}=180^{\circ}$
$\Rightarrow 2 \theta=180^{\circ}-62^{\circ}$
$\Rightarrow \theta=59^{\circ}=\angle \mathrm{OCB}$
$\angle \mathrm{BCP}=\angle \mathrm{OCP}-\angle \mathrm{OCB}$
$=90^{\circ}-59^{\circ}=31^{\circ}$
25. (c) we have, $\frac{\mathrm{AB}}{\mathrm{DF}}=\frac{\mathrm{BC}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{EF}}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{DF}}=\frac{\mathrm{BC}}{\mathrm{DE}}=\frac{\mathrm{CA}}{\mathrm{EF}}$
$\therefore \triangle \mathrm{BCA} \sim \triangle \mathrm{DEF}$

26. (b)

Let $\mathrm{QN}=\mathrm{a}, \mathrm{NR}=\mathrm{b}$,
$\mathrm{QM}=\mathrm{c}, \mathrm{MP}=\mathrm{d}$
In Δ POR,
$(\mathrm{a}+\mathrm{b})^{2}+(\mathrm{c}+\mathrm{d})^{2}=\mathrm{PR}^{2}$
In $\triangle \mathrm{PQN}$
$\mathrm{a}^{2}+(\mathrm{c}+\mathrm{d})^{2}=9^{2}=81 \ldots$ (i)
In $\Delta \mathrm{MQN}$

$\mathrm{a}^{2}+\mathrm{c}^{2}=3^{2}=9$.
In $\Delta \mathrm{MQR}$
$(\mathrm{a}+\mathrm{b})^{2}+\mathrm{c}^{2}=7^{2}=49 \ldots$...(iii)
from Eqs. (i) and (iii),
$(a+b)^{2}+a^{2}+c^{2}+(c+d)^{2}=130$
$\Rightarrow(\mathrm{a}+\mathrm{b})^{2}+(\mathrm{c}+\mathrm{d})^{2}=130-9$.......[from (ii)]
$\Rightarrow(\mathrm{a}+\mathrm{b})^{2}+(\mathrm{c}+\mathrm{d})^{2}=121$
$\Rightarrow(\mathrm{PR})^{2}=121$
$\Rightarrow \mathrm{PR}=11 \mathrm{~cm}$
27. (a)

Let $\mathrm{OA}=\mathrm{OB}=\mathrm{r}$
Then, $\mathrm{OP}=20 \mathrm{~A}=2 \mathrm{r}$
Now, AP, BP, OA, OB form a kite so Of bisects chord AB $\therefore \mathrm{AQ}=\mathrm{QB}=5 \mathrm{~cm}$
Also, Δ OAP and Δ OBP are right angled triangled.
In $\triangle \mathrm{OAP}, \operatorname{Cos}(\angle \mathrm{AOP})=\frac{\mathrm{OA}}{\mathrm{OP}}$
$\Rightarrow \cos (\angle \mathrm{AOP})=\frac{\mathrm{r}}{2 \mathrm{r}}=\frac{1}{2}=\cos 60^{\circ}$
$\Rightarrow \angle \mathrm{AOP}=60^{\circ}$
And $\angle \mathrm{OPA}=180^{\circ}-\left(90^{\circ}+60^{\circ}\right)=30^{\circ}$
Also, $\triangle \mathrm{AQO}$ and $\triangle \mathrm{BQO}$ are right-angles.
$\Rightarrow \angle \mathrm{OAQ}=180^{\circ}-\left(90^{\circ}+60^{\circ}\right)=30^{\circ}$
from $\triangle \mathrm{AQO}$,
$\cos (\angle \mathrm{QAO})=\frac{\mathrm{AQ}}{\mathrm{OA}}$
$\Rightarrow \cos 30^{\circ}=\frac{\mathrm{CE}}{\mathrm{CD}}=\frac{\mathrm{CE}}{\mathrm{CB}}=\frac{2}{5}$
$\Rightarrow \mathrm{OA}=\frac{10}{\sqrt{3}}$

In Δ OAP
$\tan 30^{\circ}=\frac{\mathrm{OA}}{\mathrm{AP}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{10}{\sqrt{3} \times \mathrm{AP}}$
$\Rightarrow \mathrm{AP}=10 \mathrm{~cm}$
28. (d) ATQ,

We know that
$\angle \mathrm{BAC}=\frac{\angle \mathrm{BOC}}{2}=\frac{84^{\circ}}{2}=42^{\circ}$
Now, in \triangle BAD,
$\angle \mathrm{BAD}+\angle \mathrm{BDA}+\angle \mathrm{ABD}=180^{\circ}$
$\Rightarrow 42^{\circ}+40^{\circ}+\angle \mathrm{ABD}=180^{\circ}$

12 ■ SSC Maths
$\Rightarrow \angle \mathrm{ABD}=180^{\circ}-82^{\circ}$
$=98^{\circ}$
29. (b) ATQ,

Join OB.
Now, $\angle \mathrm{BOA}=2 \times 2 \mathrm{BCA}$
$=2 \times 52^{\circ}=104^{\circ}$
$\Rightarrow \mathrm{OA}=\mathrm{OB}$ (radius)
$\Rightarrow \angle \mathrm{OBA}=\angle \mathrm{OAB}$
In $\triangle \mathrm{BOA}$,
$\angle \mathrm{OAB}+\angle \mathrm{OBA}+\angle \mathrm{AOB}=180^{\circ}$
$\Rightarrow \angle \mathrm{OAB}+\angle \mathrm{OAB}+104^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{OAB}=38^{\circ}$

In $\triangle \mathrm{ABD}$,
$\angle \mathrm{BAD}=180^{\circ}-90^{\circ}-68^{\circ}=22^{\circ}$
So, $\angle \mathrm{DAP}=\angle \mathrm{BAO}-\angle \mathrm{BAD}=38^{\circ}-22^{\circ}$
$=16^{\circ}$
30. (a)

In $\triangle \mathrm{ADE}$,
$\angle \mathrm{ADE}+\angle \mathrm{DEA}+\angle \mathrm{DAE}=180^{\circ}$
$\Rightarrow 80^{\circ}+50^{\circ}+\angle \mathrm{DAE}=180^{\circ}$
$\Rightarrow \angle \mathrm{DAE}=180^{\circ}-80^{\circ}-50^{\circ}$
$=50^{\circ}$
We know that ABCD is cyclic, quadrilateral, i.e.
$\angle \mathrm{ADC}+\angle \mathrm{ABF}=180^{\circ}$
$\Rightarrow 80^{\circ}+\angle \mathrm{ABF}=180^{\circ}$
$\Rightarrow \angle \mathrm{ABF}=100^{\circ}$

Now, in $\triangle \mathrm{ABF}$,
$\angle \mathrm{FAB}+\angle \mathrm{ABF}+\angle \mathrm{AFB}=180^{\circ}$
$\Rightarrow 50^{\circ}+100^{\circ}+\angle \mathrm{AFB}=180^{\circ}$
$\Rightarrow \angle \mathrm{AFB}=30^{\circ}$
31. (c) ATQ,

Given, $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{RPQ})}=\frac{16}{25}$
$\Rightarrow\left(\frac{\mathrm{AC}}{\mathrm{RQ}}\right)^{2}=\frac{16}{25}$

$\Rightarrow \frac{\mathrm{AC}}{6}=\sqrt{\frac{16}{25}}$
$\Rightarrow \mathrm{AC}=\frac{4}{5} \times 6=\frac{20}{5}=4.8 \mathrm{~cm}$
32. (a): We know that area of equilateral Triangle $=\frac{\sqrt{3}}{4} a^{2}$
$\Rightarrow 9 \sqrt{3}=\frac{\sqrt{3}}{4} \mathrm{a}^{2}$
$\Rightarrow \mathrm{a}^{2}=9 \times 4$
$\Rightarrow \mathrm{a}=3 \times 2=6$
So, the length of each side is 6 cm .
33. (c)

Let $\mathrm{DC}=x$
$\because \mathrm{AD}$ is angle bisector, then
$\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{DC}}$
$\Rightarrow \frac{12}{15}=\frac{18-x}{x} \Rightarrow \frac{4}{5}=\frac{18-x}{x}$
$\Rightarrow 4 x-90-5 x \Rightarrow 9 x=90$
$\Rightarrow x=10$

34. (d)

In $\triangle \mathrm{ABP}$ and $\Delta \mathrm{DCP}$
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{D}\left(90^{\circ}\right)$
And $\angle \mathrm{P}=\angle \mathrm{P}$ (Common)
$\therefore \triangle \mathrm{ABP} \sim \Delta \mathrm{DCP}$
$\Rightarrow \frac{\mathrm{PA}}{\mathrm{PD}}=\frac{\mathrm{PB}}{\mathrm{PC}}$
$\Rightarrow \frac{8}{3.2}=\frac{\mathrm{PB}}{4}$

$\Rightarrow \mathrm{PB}=\frac{8 \times 4}{3.2}=10 \mathrm{~cm}$
So, the length of $\mathrm{BD}=\mathrm{PB}-\mathrm{DP}$
$=10-3.2$
$=6.8 \mathrm{~cm}$.
35. (b)

Given,
$\mathrm{BD}=\frac{1}{3} \times \mathrm{BC}$
$=\frac{1}{3} \times 18=6 \mathrm{~cm}$
In $\Delta \mathrm{ABD}$,
$\cos \mathrm{B}=\frac{(\mathrm{AB})^{2}+\left(\mathrm{BD}^{2}\right)-(\mathrm{AD})^{2}}{2 \times \mathrm{AB} \times \mathrm{BD}}$

$\Rightarrow \cos 60^{\circ}=\frac{18^{2}+6^{2}-\mathrm{AD}^{2}}{2 \times 18 \times 6}$
$\Rightarrow \frac{1}{2}=\frac{324+36-\mathrm{AD}^{2}}{2 \times 18 \times 6}$
$\Rightarrow 108=360-\mathrm{AD}^{2}$
$\Rightarrow \mathrm{AD}^{2}=252$
$\Rightarrow \mathrm{AD}=6 \sqrt{7} \mathrm{~cm}$
36. (c) By midpoint theorem, D and E are mid-points then.
$\mathrm{DE} \| \mathrm{AC}$ and $\mathrm{DE}=\frac{\mathrm{AC}}{2}$
Let $\mathrm{DE}=x$, then $\mathrm{AC}=2 x$
Now, DE is the median of BC , and median divides triangle in two equal areas, ie.
$\triangle \mathrm{DEC}=\triangle \mathrm{DEB}=8 \mathrm{~cm}^{2}$
Now, $\frac{\text { ar } \triangle \mathrm{BDE}}{\text { ar } \triangle \mathrm{BAC}}=\left(\frac{\mathrm{DE}}{\mathrm{AC}}\right)^{2}$
$\Rightarrow \frac{8}{\operatorname{ar} \triangle \mathrm{BAC}}=\frac{x^{2}}{4 x^{2}}$
\Rightarrow ar $\triangle \mathrm{BAC}=32 \mathrm{~cm}^{2}$
\therefore Area of $\mathrm{ADEC}=$ ar $\Delta \mathrm{BAC}-\operatorname{ar} \Delta$
$=39-8=24 \mathrm{~cm}^{2}$

37. (c)

Let $\mathrm{AB}=x$
Then, $\mathrm{PT}^{2}=\mathrm{PA} \times \mathrm{PB}$
$\Rightarrow 8^{2}=5 \times(5+x)$
$\Rightarrow 64=25+5 x$
$\Rightarrow x=\frac{39}{5}=7.8 \mathrm{~cm}$
38. (a)

Let $\angle \mathrm{BAD}=\theta$,
then $\angle \mathrm{ADC}=2 \theta$
In $\Delta \mathrm{ABC}$,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 77^{\circ}+\angle \mathrm{B}+45^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{B}=58^{\circ}=\angle \mathrm{ABC}$
Now, In $\triangle \mathrm{ABD}$,
$\angle \mathrm{BAD}+\angle \mathrm{ADB}+\angle \mathrm{ABD}=180^{\circ}$
$\theta+\left(180^{\circ}-20\right)+58^{\circ}=180^{\circ}$
$\Rightarrow \theta=58^{\circ}$
$\therefore \angle \mathrm{ADB}=180^{\circ}-2 \theta=180^{\circ}-116^{\circ}=64^{\circ} \mathrm{p}$
39. (a)

We know that
$\mathrm{AS}=\mathrm{AP}=6 \mathrm{~cm}$.
and given $\mathrm{BC}=12 \mathrm{~cm}$
but $\mathrm{RC}=\mathrm{QC}=5 \mathrm{~cm}$
$\Rightarrow \mathrm{BQ}=12-\mathrm{QC}=12-5=7 \mathrm{~cm}$
But also, $\mathrm{PB}=\mathrm{BQ}=7 \mathrm{~cm}$
$\therefore \mathrm{AB}=\mathrm{AP}+\mathrm{PB}=6+7=13 \mathrm{~cm}$
40. (c)

In cyclic quadrilateral
$\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 4 x=180^{\circ}$
$\Rightarrow \angle \mathrm{C}=45^{\circ}$
and $\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$
$\Rightarrow 3 y=180^{\circ} \Rightarrow y=60^{\circ}$

$\Rightarrow \angle \mathrm{D}=120^{\circ}$
$\therefore \angle \mathrm{D}-\angle \mathrm{C}=120^{\circ}-45^{\circ}=75^{\circ}$

